您当前的位置:首页 > 科技

数据挖掘算法的书籍(数据挖掘方面的书籍)

时间:2024-08-06 19:01:24

本篇目录:

1、有什么比较好的大数据入门的书推荐?2、求高手推荐学习数据挖掘的方法以及详细的学习过程。3、有哪些数据分析、数据挖掘的书推荐下4、数据挖掘从入门到进阶,要看什么书

有什么比较好的大数据入门的书推荐?

以下是一些大数据学习书籍的推荐:《Hadoop权威指南(第4版)》:这本书是Hadoop生态系统的经典之作,涵盖了Hadoop的所有方面,包括HDFS、MapReduce、YARN等。它是学习Hadoop的第一本书,也是最好的一本书之一。

《大数据概论》:作者张斌,这本书对大数据的基本概念、技术体系、应用领域等做了全面的介绍,是了解大数据的入门书籍。

数据挖掘算法的书籍(数据挖掘方面的书籍)-图1

《浅显易懂数据分析》数据分析入门首先本。类似于小说的生动办法,浅显易懂形象生动地诠释了数据分析的根底进程,试验办法,最优化办法/假定查验法袭弊锋/贝叶斯核算法/等等办法论,让读者可以对剖析概念有个全面的认知。

《Learning Spark》《Spark 快速大数据分析》是一本为Spark 初学者准备的书,它没有过多深入实现细节,而是更多关注上层用户的具体用法。

了解统计学知识——10小时15个小时只够你了解一下统计学知识,作为入门足够,但你要知道,今后随着工作内容的深入,需要学习更多的统计知识。

比较好的大数据入门的书有《大数据日知录:架构与算法》。《大数据日知录:架构与算法》是2014年电子工业出版社出版的图书,作者是张俊林。《大数据日知录:架构与算法》从架构与算法的角度全面梳理了大数据存储与处理的相关技术。

数据挖掘算法的书籍(数据挖掘方面的书籍)-图2

求高手推荐学习数据挖掘的方法以及详细的学习过程。

学习大规模并行计算的技术,例如MapReduce、MPI,GPU Computing。基本每个大公司都会用到这些技术,因为现实的数据量非常大,基本都是在计算集群上实现的。

经典图书推荐:《数据挖掘概念与技术》、《机器学习实战》、《人工智能及其应用》、《数据库系统概论》、《算法导论》、《Web数据挖掘》、《 Python标准库》、《thinking in Java》、《Thinking in C++》、《数据结构》等。

预测方法。预测方法主要用于对知识的预测以及对连续数值型数据的挖掘,传统的预测方法主要分为:时间序列方法、回归模型分析法、灰色系统模型分析。

看数据挖掘方面的算法理论时经常感觉一些公式的推导过程如天书一般,例如看svm的数学证明,EM算法..,感觉知识跳跃比较大,那么数据挖掘系统的学习过程是怎么样?磨刀不误砍柴工。

数据挖掘算法的书籍(数据挖掘方面的书籍)-图3

数据挖掘是指人们从事先不知道的大量不完整、杂乱、模糊和随机数据中提取潜在隐藏的有用信息和知识的过程。

有哪些数据分析、数据挖掘的书推荐下

推荐:Jiawei Han的《数据挖掘概念与技术》、Ian H. Witten 的《数据挖掘实用机器学习技术》、Pang-Ning Tan的《数据挖掘导论》、Matthew A. Russell的《社交网站的数据挖掘与分析》、Anand Rajaraman的《大数据》。

《数据化处理:查询零售及电子商务运营》作者具有15年的出售及数据分析履历,历经美国强生公司、妮维雅公司、雅芳公司和鼎盛时期的诺基亚公司,现在是数据化处理的咨询参谋和操练师。

)入门篇 《深入浅出数据分析》,深入浅出系列,看完这本书,你对数据分析就有了一个大概的认知了。《谁说菜鸟不会数据分析》,两种,小黄书和小蓝书,讲解了一些常见的业务场景以及分析方法,能够让你对职场有一定了解。

《大数据分析:点“数”成金》该书向读者介绍怎样将大数据分析应用于各行各业。在中,你将了解到如何对数据进行挖掘,怎样从数据中揭示趋势并转化为竞争策略及攫取价值的方法。

数据挖掘从入门到进阶,要看什么书

1、很多人的第一本数据挖掘书都是Jiawei Han的《数据挖掘概念与技术》,这本书也是我们组老板推荐的入门书(我个人觉得他之所以推荐是因为Han是他的老师)。其实我个人来说并不是很推荐把这本书。

2、如果你刚好正在寻找这方面的入门书籍,那么韩家炜老师写的《数据挖掘:概念与技术》绝对是一个不错的选择。该书针对传统的数据分析方法,常见的如聚类、分类、去噪等,都做了非常细致的说明,并附带详实的算法、实例。

3、读书《Introduction to Data Mining》,这本书很浅显易懂,没有复杂高深的公式,很合适入门的人。另外可以用这本书做参考《Data Mining : Concepts and Techniques》。第二本比较厚,也多了一些数据仓库方面的知识。

4、《数据挖掘导论(无缺版)》本书全面介绍了数据挖掘,包括了五个主题:数据、分类、相关剖析、聚类和异常检测。除异常检测外,每个主题都有两章。前一章包括根柢概念、代表性算法和点评技术,然后一章谈论高档概念和算法。

到此,以上就是小编对于数据挖掘方面的书籍的问题就介绍到这了,希望介绍的几点解答对大家有用,有任何问题和不懂的,欢迎各位老师在评论区讨论,给我留言。

数据挖掘

最新文章