您当前的位置:首页 > 科技

十大数据挖掘(数据挖掘你必须知道的32个经典案例)

时间:2024-08-08 09:07:01

本篇目录:

1、数据挖掘十大经典算法之朴素贝叶斯2、请问,中国十大著名的调查研究咨询机构公司?3、数据挖掘十大经典算法之EM4、K-Means聚类算法原理是怎么样的?5、大数据挖掘的算法有哪些?6、数据挖掘十大算法-

数据挖掘十大经典算法之朴素贝叶斯

先站好队,朴素贝叶斯是一个典型的 有监督的分类算法 。光从名字也可以想到,要想了解朴素贝叶斯,先要从 贝叶斯定理 说起。 贝叶斯定理是我们高中时代学过的一条概率学基础定理,它描述了条件概率的计算方式。

(1)朴素贝叶斯模型发源于古典数学理论,有稳定的分类效率。(2)对小规模的数据表现很好,能个处理多分类任务,适合增量式训练,尤其是数据量超出内存时,我们可以一批批的去增量训练。

十大数据挖掘(数据挖掘你必须知道的32个经典案例)-图1

的概率分为两种情况来区别,一种是对分类特征的概率确定,一种是连续特征的概率确定。接下来借用《数据挖掘导论》上的例子来说明概率确定的方式。

在CART算法中主要分为两个步骤:将样本递归划分进行建树过程;用验证数据进行剪枝。 K-means k-平均算法(k-means clustering)[5]是源于信号处理中的一种向量量化方法,现在则更多地作为一种聚类分析方法流行于数据挖掘领域。

请问,中国十大著名的调查研究咨询机构公司?

1、百思特是一家国内知名管理咨询公司,成立于2007年,主要提供企业形象策划、投资策划等咨询服务。

2、现已成为中国最为专业的产业市场调查研究咨询机构及服务商。上海尼尔森市场研究有限公司(AC-Nielsen)尼尔森公司是全球首屈一指的媒介和资讯集团,尼尔森公司为私营公司,其业务遍布全球100多个国家,总部位于美国纽约。

十大数据挖掘(数据挖掘你必须知道的32个经典案例)-图2

3、睿信致成管理咨询公司:是国内领先的提供整体解决方案的管理咨询公司。睿信专注于为企业提供系统的咨询服务与业务解决方案。

数据挖掘十大经典算法之EM

1、EM:最大期望值法。pagerank:是google算法的重要内容。 Adaboost:是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器然后把弱分类器集合起来,构成一个更强的最终分类器。

2、Forgy方法易于使得初始均值点散开,随机划分方法则把均值点都放到靠近数据集中心的地方;随机划分方法一般更适用于k-调和均值和模糊k-均值算法。对于期望-最大化(EM)算法和标准k-means算法,Forgy方法作为初始化方法的表现会更好一些。

3、EM算法从任意一点 出发,依次利用E-step优化 ,M-step优化 ,重复上述过程从而逐渐逼近极大值点。而这个过程究竟是怎样的呢,就让我们一步步地揭开EM算法的面纱。

十大数据挖掘(数据挖掘你必须知道的32个经典案例)-图3

4、以下主要是常见的10种数据挖掘的算法,数据挖掘分为:分类(Logistic回归模型、神经网络、支持向量机等)、关联分析、聚类分析、孤立点分析。

K-Means聚类算法原理是怎么样的?

一,K-Means聚类算法原理 k-means 算法接受参数 k ;然后将事先输入的n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。

Kmeans是一种无监督的基于距离的聚类算法,其变种还有Kmeans++。

K-Means 是聚类算法中的最常用的一种,算法最大的特点是简单,好理解,运算速度快,但是只能应用于连续型的数据,并且一定要在聚类前需要手工指定要分成几类。假设有一些点分散在直线上,现在需要对这些点进行聚类分析。

K-means算法是一种常用的聚类算法,其原理如下:初始化:随机选择k个初始质心,每个质心表示一个簇的中心点。分配:对于每个数据点,计算其到k个质心的距离,将其分配给距离最近的质心所表示的簇。

K-means算法的工作原理:首先随机从数据集中选取K个点作为初始聚类中心,然后计算各个样本到聚类中的距离,把样本归到离它最近的那个聚类中心所在的类。

由于具有出色的速度和良好的可扩展性,Kmeans聚类算法算得上是最著名的聚类方法。Kmeans算法是一个重复移动类中心点的过程,把类的中心点,也称重心(centroids),移动到其包含成员的平均位置,然后重新划分其内部成员。

大数据挖掘的算法有哪些?

有时也把数据挖掘分为:分类,回归,聚类,关联分析。

遗传算法 遗传算法是一种基于生物自然选择与遗传机理的随机搜索算法,是一种仿生全局优化方法。遗传算法具有的隐含并行性、易于和其它模型结合等性质使得它在数据挖掘中被加以应用。

其中,数据挖掘经典十大算法为:C5,K-Means,SVM,Apriori,EM,PageRank,AdaBoost,KNN,NB和CART。常见的分布式计算有Hadoop Spark等,如果要实时计算的,一般用Storm什么的。

常用的数据挖掘算法分为以下几类:神经网络,遗传算法,回归算法,聚类分析算法,贝耶斯算法。

数据挖掘十大算法-

1、最大期望算法(Expectation–Maximization Algorithm, EM)[7]是从概率模型中寻找参数最大似然估计的一种算法。其中概率模型依赖于无法观测的隐性变量。最大期望算法经常用在机器学习和计算机视觉的数据聚类(Data Clustering)领域。

2、AdaBoostAdaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器 (强分类器)。

3、EM算法是一种迭代优化策略,由于它的计算方法中每一次迭代都分两步,其中一个为期望步(E步),另一个为极大步(M步),一轮轮迭代更新隐含数据和模型分布参数,直到收敛,即得到我们需要的模型参数。

4、SVM:一种监督式学习的方法,广泛运用于统计分类以及回归分析中Apriori :是一种最有影响的挖掘布尔关联规则频繁项集的算法。EM:最大期望值法。pagerank:是google算法的重要内容。

到此,以上就是小编对于数据挖掘你必须知道的32个经典案例的问题就介绍到这了,希望介绍的几点解答对大家有用,有任何问题和不懂的,欢迎各位老师在评论区讨论,给我留言。

算法

最新文章