天津seo博客(重庆SEO博客)
“如何计算关键词在文章中的重要性”,在网上找了很多资料,都提到了这个算法,就是文章提取关键词TF-IDF算法。
总结
TF-IDF,理解起来相当简单,他实际上就是TF*IDF,两个计算值的乘积,用来衡量一个关键词库中的词对每一篇文档的重要程度。下面我们分开来讲这两个值,TF和IDF。
TF
TF,是Term Frequency的缩写,就是某个关键字出现的频率,具体来讲,就是词库中的某个词在当前文章中出现的频率。那么我们可以写出它的计算公式:
TF值算法
TF:关键词j在文档中的出现频率。
比如,一篇文章一共100个词汇,其中“内蒙古seo”一共出现10次,那么他的TF就是10/100=0.1。
这么看来好像仅仅是一个TF就能用来评估一个关键词的重要性(出现频率越高就越重要),其实不然,单纯使用TF来评估关键词的重要性忽略了常用词的干扰。常用词就是指那些文章中大量用到的,但是不能反映文章性质的那种词,比如:因为、所以、因此等等的连词,在英文文章里就体现为and、the、of等等的词。这些词往往拥有较高的TF,所以仅仅使用TF来考察一个词的关键性,是不够的。这里我们要引出IDF,来帮助我们解决这个问题。
IDF
IDF,英文全称:Inverse Document Frequency,即“逆文档频率”。先看什么是文档频率,文档频率DF就是一个词在整个文库词典中出现的频率,就拿上一个例子来讲:一个文件集中有100篇文章,共有10篇文章包含“机器学习”这个词,那么它的文档频率就是10/100=0.1,逆文档频率IDF就是这个值的倒数,即10。因此得出它的计算公式:
IDF值算法
IDF:词语的逆文档频率
+1是为了防止分母变0。
于是这个TF*IDF就能用来评估一个词语的重要性。
IF-IDF值算法
还是用上面这个例子,我们来看看IDF是怎么消去常用词的干扰的。假设100篇文档有10000个词,研究某篇500词文章,“重庆seo”出现了20次,“而且”出现了20次,那么他们的TF都是20/500=0.04。再来看IDF,对于语料库的100篇文章,每篇都出现了“而且”,因此它的IDF就是log1=0,他的TF*IDF=0。而“机器学习”出现了10篇,那么它的IDF就是log10=1,他的TF*IDF=0.04>0,显然“机器学习”比“而且”更加重要。
总结
这算法看似简单,实际上搜索引擎优化啊,文本分类方面用的挺多的,面试时也常常作为信息论知识储备来出题。怕什么真理无穷,进一寸有一寸的欢喜
- 1bat的大数据(BAT的大数据来源)
- 2三星s8屏幕上端2(三星s8屏幕上端2个按键)
- 3三星屏幕坏了如何导出(三星屏幕摔坏了如何导出数据么)
- 4红米3x怎么关闭自动更新(红米k40s怎么关闭自动更新)
- 5微信上防止app自动下载软件怎么办(微信上防止app自动下载软件怎么办啊)
- 6押镖多少钱(押镖一个月有多少储备金)
- 7瑞星个人防火墙胡功能(瑞星个人防火墙协议类型有哪些)
- 8cf现在等级是多少(cf等级2020最新)
- 9老滑头多少条鱼(钓鱼老滑头有什么用)
- 10WPS自动调整语法(wps如何修改语法)
- 11dell控制面板防火墙(dell的防火墙怎么关闭)
- 12丑女技能升多少(丑女技能需要满级吗)
- 13智能家居系统怎么样(智能家居系统好吗)
- 14戴尔屏幕(戴尔屏幕闪烁)
- 15y85屏幕信息(vivoy85息屏显示时间怎么设置)
- 16魅蓝note3屏幕出现方格(魅蓝note屏幕竖条纹)
- 17v8手指按屏幕(触屏手指)
- 18金为液晶广告机(液晶广告机lb420)
- 19三星显示器怎么校色(三星显示器 调色)
- 20hkc显示器dvi音频(hkc显示器有音响么)
- 21康佳液晶智能电视机(康佳液晶智能电视机怎么样)
- 22做液晶画板电脑(做液晶画板电脑怎么操作)
- 23液晶屏极化现象原理(液晶屏极化现象原理是什么)
- 24企业网络安全防火墙(企业网络防护)
- 256splus黑屏屏幕不亮(苹果6s plus屏幕突然黑屏)
- 26充电导致屏幕失灵(充电导致屏幕失灵怎么办)
- 27超极本屏幕旋转(笔记本电脑屏幕旋转,怎么转过来?)
- 28igmp防火墙(防火墙配置ipv6)
- 29荣耀王者多少经验(王者荣耀经验多少一级)
- 30lol老将还剩多少(qg老将)